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Abstract. The spread of the coronavirus is putting a strain on financial markets
and the resulting stock market volatility is causing huge problems for investors.
Volatility in the U.S. market has returned to levels not seen since the 2011 sovereign
debt crisis. It is already clear that this volatility has had a negative effect on the
economy. In this study, we introduce a regime-switching GJR-GARCH model with a
stable distribution to investigate the predictive power of the S&P 500 index volatility
to VaR estimation. The results of VaR backtesting at a 5% risk level confirm that
the model performs better and is a useful tool for the risk manager and financial
regulator.
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Résumé. La propagation du coronavirus met les marchés financiers à rude
épreuve et la volatilité boursière qui en résulte pose d’énormes problèmes aux
investisseurs. La volatilité sur le marché américain est revenue à des niveaux
jamais vus depuis la crise de la dette souveraine de 2011. Il est déjà clair que cette
volatilité a eu un effet négatif sur l’économie. Dans cette étude, nous introduisons
un modèle GJR-GARCH à changement de régime avec une distribution stable
pour étudier le pouvoir prédictif de la volatilité de l’indice S&P 500 à l’estimation
de la VaR. Les résultats du backtesting de la VaR à un niveau de risque de 5%
confirment que le modèle est plus performant et constitue un outil utile pour le
gestionnaire de risque et le régulateur financier.

The authors.
Gado Sema, M.Sc. in Applied Mathematics, is preparing a Ph.D, thesis under the
third author, at Gaston Berger University, Saint-Louis, SENEGAL.
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1. Introduction

Since February 2020, new cases of COVID-19 reported by the rest of the world
have been observed on a clear upward trend, with the increase in infectious cases
rapidly overtaking China, the initial epicenter of the COVID-19 epidemic. The WHO
officially announced that COVID-19 was a global pandemic on March 11, 2020,
just days after the WHO declared the new virus a public health emergency of
international concern on January 30, 2020. Since then, governments around the
world have imposed historic containment measures to control the spread of the
COVID-19 virus such as closing entertainment facilities, suspending commercial
and non-commercial activities such as controlling movement within the country,
closing borders with strict controls, and closing all school levels, etc. The spread
of the COVID-19 virus is still ongoing with more than 100 million COVID-19 cases
reported, with a number of deaths approaching 2 million worldwide even though
by the end of November 2020, the announcement of the vaccine discovery was
made. The consequences of this pandemic are far beyond our imagination. Almost
all economic activities have been directly or indirectly limited by the pandemic,
which has caused unprecedented damage to the global economy.

Ma et al. (2020) examine the impact of the five previous infectious diseases,
including SARS [2003], H1N1 [2009], MERS [2012], Ebola [2014] and Zika [2016]
in the 21st century to understand the potential effects of COVID-19 on the global
economy and financial markets. The authors find that the stock market is more
likely to overreact in the short term, which is consistent with the preliminary
presentation by Phan and Narayan (2020) WHO argue that the initial overreaction
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is due to investor fears about the uncertainty of the development of the COVID-19
virus. Sharif et al. (2020) argue that there is a strong negative impact on the U.S.
stock market in the short term and that the possibility of a spread of optimism
among long-term investors cannot be ruled out with respect to the confidence that
the government has built up through its effective intervention.

To measure the potential losses of portfolios under adverse market conditions, the
financial industry and regulators have developed rules. One of the objectives of
these efforts was to provide banks with a framework for determining the capital
necessary for their survival in time of economic and financial difficulty. Risk
measurement is a necessary condition of risk management: institutions must be
able to quantify the amount of risk they face and effectively develop a strategy to
mitigate the consequences of extreme adverse events. In particular, financial risk
in equity markets is market risk, which represents the potential losses resulting
from adverse movements in equity or currency markets, interest rates, etc.

In the literature, Value-at-Risk (VaR) is commonly accepted as the standard
measure of market risk and indicates the maximum probable loss on a given port-
folio, with reference to a specific confidence level and time horizon. An extensive
literature exists on VaR, including statistical descriptions and reviews according
to the following models (Giot and Laurent (2003)). Historically, the literature on
VaR has evolved along parametric and non-parametric lines. While in the latter
case, the probability distribution of future returns is ”simulated from the past”
in order to estimate the relevant quantile (i.e. VaR), the parametric approach is
based on fitting a certain family of probability laws to observed historical returns.
VaR at an α% level is estimated as the loss that might be exceeded α% of the
time. Like many other models in finance, it is often based on an assumption
that losses follow a normal distribution. Extreme losses are greater than and
occur much more often than, a normal distribution would predict. For this
purpose, VaR measurements are sometimes based on a t-distribution or on an
ARCH/GARCH system, with the innovations of normal or t-distribution. Several
other distributions or mixtures of distributions have been proposed, but none has
received universal acceptance, and it is probable that none ever will. Empirically,
it has been found that equity returns are sometimes negatively correlated with
changes in volatility: volatility tends to increase after bad news and decrease
after good news. This is the leverage effect. Leverage is not easily detectable in
stock market indexes and a company’s leverage ratio increases when its share
price falls. If the company’s cash flow is constant, it will increase the volatility
of the stock’s return. In this case, negative returns today could be expected
to lead to greater volatility tomorrow, and vice versa for positive returns. This
behavior cannot be captured by standard GARCH (1,1) models. Symmetric VaR
models of the GARCH class have difficulties in correctly modeling the tails of the
distribution of returns (Giot and Laurent (2003)) because of leverage effects. The
use of asymmetric conditional models that contain an asymmetry parameter in
the conditional variance equation and the use of asymmetric density functions for
the error terms allows leverage to be taken into account in the volatility forecast.
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Although these approaches offer an improvement in fit over symmetric models,
empirical evidence suggests that the persistence of the conditional variance is
likely to be significantly biased upwards.

Initially, Engle (1982) assumed that this was a normal distribution in finan-
cial time series to take into account the distribution of the error term. Then,
Bollerslev (1987) proposed that the student-t distribution is more appropriate
than the normal distribution. Nelson (1991) claimed that Generalized Error
Distribution (GED) is more appropriate since it considers the fat tails of financial
data. Wilhelmsson (2006) confirmed that the error distribution is important in
improving the results when using leptokurtic error distributions instead of the
normal distribution. Thus, the symmetric versions of the Gaussian, Student-t, and
GED distributions are applied in this study. These distributions fail to describe
the empirical evidence in financial markets. A possible alternative is to introduce
stable laws (Lévy (1925)) what Mandelbrot (1963) and Fama (1965) proposed in
the 1960s. Apart from that, they can account for heavy tails and the behavior
asymmetrical, on the other hand, dependent on four parameters, the stable laws
are more flexible than normal, Student-t, GED laws to adjust empirical data in
the estimation. The family of stable distributions or α-stable distribution replaces
the generally used fat-tailed distribution. Calzolari et al. (2014) proposed it.

A Markov regime-switching (MS) approach solves this problem by endogenizing
changes in the data generation process. In order to allow GARCH-type het-
eroskedasticity within the regime, Gray (1996) extended Hamilton’s MS model
to the MS-GARCH model. This model was then modified by Klaassen (2002).
Marcucci (2005) compares a set of GARCH, EGARCH, and GJR-GARCH models
in an MS-GARCH model (Gaussian, Student’s t and generalized error distribu-
tion for innovations) in terms of their ability to predict S&P 100 volatilities.
Ané and Ureche-Rangau (2006) extend the regime-switching model developed by
Gray (1996) to an Asymmetric Power (AP ) GARCH model and evaluate its perfor-
mance on four Asian stock market indices. Sajjad et al. (2008) apply an asymmetric
Markov regime-switching GARCH (MRS-GARCH ) model to estimate Value-at-Risk
for long and short positions of the FTSE 100 and S&P 500 index. The study shows
that MRS-GARCH under a Student-t distribution for the innovations outperforms
other models in estimating the VaR for both long and short positions of the FTSE
returns data. In the case of the S&P index, the MSGARCH-t and EGARCH-t
models have the best performance, while the MRS-GARCH also performs quite
accurately. Recently, MS-GARCH models have been popular for financial time
series analysis and have been used in many econometric studies. For example,
Chen (2012) used the Bayesian standard, the non-linear threshold and MS-GARCH
to predict the VaR, both before and after the financial crisis. Consequently, the
models were developed according to Chen et al. (2009), Chen et al. (2017), and
Sampid et al. (2018). To study the asymmetric effects on the conditional mean and
the conditional volatility of time series, Chen et al. (2009) extended the MS-GARCH
model. They presented a dual MS-GARCH model (DMS-GARCH ). The main advan-
tages of this model are the capture of leptokurtotic, the clustering of volatility,
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and an asymmetric correlation between time series and conditional volatility.
Chen et al. (2017) proposed a general and time-varying smooth transition (ST )
with conditional heteroscedastic models, and used a second-order logistic function
of mean and discourse of variance. The advantage of this model is the greater
flexibility of the model’s parameters. A Bayesian model MS-GJR-GARCH (1,1) with
a skewed Student’s-t distribution, copula functions, and Extreme Value Theory
(EVT ) was presented by Sampid et al. (2018). The main feature of this model are to
study the fluctuation and volatility and allow the parameters of the GARCH model
to fluctuate over time according to a Markov process. In addition, they proposed
the selection of thresholds in extreme value theory. Especially in quiet periods
and in crisis periods, the empirical study shows that this model can capture VaR
well. More authors have recently worked on stock markets in order to select the
portfolio on uncertain returns with the programming methods. Chen et al. (2017)
and Zhang et al. (2015) have addressed the problem of portfolio selection in an
uncertain environment where stock returns cannot be well reflected by historical
data, but can be evaluated by experts. They assumed security returns to be
given by an uncertain variable. Recently, Ardia et al. (2018) perform a large-scale
empirical study in order to compare the forcasting performances of single-regime
and Markov-switching GARCH (MS-GARCH ) models from a risk management per-
spective. They find that MS-GARCH models yield accurate Value-at-Risk, expected
shortfall, and left-tail distribution forecast than their single-regime counterparts
for daily, weekly, and ten-day equity log-returns.

Based on the previous literature, we then introduce an asymmetric two-regime
MRS-GARCH (1,1) model by combining a GJR-GARCH (1,1) specification with stable
innovations using the regime-switching Markov model introduced by Gray (1996).
Since the literature is limited to taking into account the asymmetric character-
istics and the heavy tails of financial series, the GJR-GARCH (1,1) specification
of our MRS-GJR-GARCH (1,1) solves the asymmetry problem and uses a stable
distribution to take into account the heavy tails observed in financial series. This
is of crucial importance to account for leveraging in the stocks markets. We first
present the descriptive statistic of the S&P 500 stock market index, then the
estimation of the parameters of our model by the Monte Carlo method. Second,
in the same way as Ardia et al. (2018), we evaluate the performance of our model
using a backtesting procedure, statistical techniques to test the significance of VaR
violations and several common procedures to assess the quality of risk predictions
over two periods: two years before the COVID-19 pandemic and one year during
the COVID-19 pandemic. Backtesting is useful to identify weaknesses in risk
forecasting models and to provide ideas for improvement, but it is not informative
about the causes of the weaknesses. Model that do not work well in backtesting
need to have their assumptions and parameter estimates questioned. However,
backtesting can avoid underestimating VaR and thus ensure that a bank has
sufficient capital. At the same time, reducing the probability of overestimating
VaR due to backtesting can lead to excessive conservatism.
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In particular, this study is to examine whether the MRS-GJR-GARCH model with
two-regime using stable distribution, improves the forecasting VaR model com-
pared to their single regime counterpart. VaR model is widely used in forecasting
risk on the stock return volatility, however, there have been more studies on
the VaR model in this stock index. Thus, we would like to extend the limited
empirical research on VaR estimation to forecasting S&P 500 return volatility. The
remainder of this paper is organized as follows. Section 2 briefly describes the
MRS-GJR-GARCH (1,1) model with the stable distribution. Section 3 provides the
descriptive statistics of data and empirical results. The last section concludes.

2. Model Specification

2.1. Markov-Switching GJR-GARCH (MS-GJR-GARCH) Model

In order to describe two-state Markov Regime-Switching GJR-GARCH model, we
start with a GJR-GARCH model (Glosten et al. (1993)) given in (1) below:{

yt = ξt
√
ht ; t = 1, 2, · · ·

ht = γ +
(
α1 + α2I{yt−1 < 0}

)
y2
t−1 + βht−1; γ > 0, α1, α2, β ≥ 0

with the indicator function

I{yt−1 < 0} =

{
1 if yt−1 < 0,
0 if yt−1 ≥ 0,

where the conditional variance ht = h(θh,Ψt−1), with θh = (γ, α1, α2, β) being vector
of parameters, and Ψt−1 being the entire past history of the data up to time t − 1,
and ξt is a stationary sequence of random variables with mean zero and variance
one.

If α2 > 0 then a leverage effect exists, that is negative news has a bigger impact on
volatility than positive news. If α2 6= 0, the news impact is asymmetric. The leverage
effect is often described as a falling equity price which leads to an increase in a
firm’s debt to equity ratio which increases the volatility of returns to equity holders.

Let St be an ergodic Markov chain on a finite set S = {1, 2} with transition proba-
bilities matrix

P =

[
P11 P21

P12 P22

]
=

[
p (1− q)

(1− p) q

]
,

where Pij = Pr(St = i|St−1 = j). In this study, the state variable (St) takes value 0
or 1 referring to a two-state.

For Markov switching GJR-GARCH model, we have
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hit = γi +
(
α1,i + α2,iI{yt−1 < 0}

)
y2
t−1 + βiht−1, i = St ∈ {1, 2},

where hit is a Ψt−1-measurable function, which defines the filter for the conditional
variance and ensures that it is positive, and the indicator function I{·} is defined
to be 1 if the condition holds and 0 otherwise. We have θi = (γi;α1,i;α2,i;βi) with
St = i = 1, 2. To ensure the positivity of the conditional variance we impose the
restrictions γi > 0, α1,i ≥ 0, α2,i ≥ 0, and βi ≥ 0.

The degrees of asymmetry in the conditional volatility is governed by the parameter
α2,i.

2.2. Distribution of models

2.2.1. Normal distribution

The probability density function (PDF ) of the standard normal distribution can be
expressed as

f(η) =
1√
2π
e−

1
2η

2

, η ∈ R,

which may be maximized with respect to (β; γ;σ; δ).

2.2.2. Student’s t and General Error Distribution

Student t distribution has become a standard benchmark in developing models
for asset return distribution because it is able to describe fat tails observed in
many empirical distributions. Also, its mathematical properties are well known.
The density function of the standardized student-t distribution can be expressed as

Student”s t:

f(η, v) =
Γ(
v + 1

2
)

Γ(
v

2
)
√
π(v − 2)

(
1 +

η2

(v − 2)

)−v + 1

2
, η ∈ R,

where Γ() is the Gamma distribution. To guarantee the second order moment ex-
ists, the constraint of v has to be higher than two. The kurtosis of the distribution
is higher for lower v.

The density function of the standardized generalized error distribution (GED) can
be expressed as
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f(η, v) =
ve−

1
2 |η/λ|

v

λ2(1+ 1
v )Γ( 1

v )
, λ =

(
Γ(1/v)

41/vΓ(3/v)

)
, η ∈ R, (1)

where v is the shape parameter which has to be greater than zero.

2.2.3. The α-Stable distribution

Stable random variables were first introduced by Gnedenko and Kolmogrov (See
Gnedenko and Kolmogorov (1954)) in a study of the sum of random variables.
However, the first formal definition of a stable random variable was given by
Feller (1971). Stable distributions were also studied by Zolotarev (1986) and ap-
plied to finance by Rachev and Mittnik (2000). The family of stable distribu-
tions or α-stable distribution replaces the generally used fat-tailed distribution.
Calzolari et al. (2014) proposed it. The α-stable distribution has the particularity
of overcoming the problem of stability. Moreover, by taking into account asymmetry
and heavy tails, the α-stable distribution thus constitutes a generalization of the
Gaussian distribution. It is generally said that a random variable x is stably dis-
tributed if and only if, for any positive number c1 and c2, there is a positive number
k and a real number d such that

kx+ d = c1x1 + c2x2,

where x1 and x2 are independent variables and have the same distribution as x.
Equation (1) describes the property of stability under addition (Tankov (2003)). In
particular, if d = 0, x is said to be strictly stable. The theoretical foundations of
the alpha-stable distribution, according to Calzolari et al. (2014), are based on the
generalized central limit theorem, in which the finite variance condition is replaced
by a much less restrictive condition concerning regular tail behaviour. The α-stable
distribution can be described by its characteristic function because this distribu-
tion has no close density function, which is the following form.

φ(t) =

exp
(
iδt− σα|t|α(1− iβsign(t)tan(πα/2)

)
, α 6= 1

exp
(
iδt− σα|t|α(1− iβ 2

π
sign(t) log |t|)

)
, α = 1

where

sign(t) =


1, t > 0,

0, t = 0,

−1, t < 0,

α ∈ [0, 2] is the index of stability or characteristic exponent that describes the
tail-thickness of the distribution (small values indicating thick tails). The scale
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parameter σ > 0 measures the spread of the distribution. The location parameter
δ ∈ R is a rough measure of the midpoint of the distribution. The skewness
parameter β lies in the closed interval [−1, 1] and is a measure of the asymmetry
of the distribution.

Calzolari et al. (2014) only consider the symmetric α-stable distribution (β = 0),
which is then characterized by (α, σ, δ) and is denoted as Sα(0, σ, δ). Therefore, the
standardized symmetric version is Sα(0, 1, 0) with the following characteristic func-
tion

φ(t) = exp{−|t|α}.

If α = 1 and β = 0, the stable distribution is the Cauchy distribution. If α = 2
and β = 0, the stable distribution is the normal distribution. If 1 < α < 2, the
most plausible case for financial series, the tails of the stable distribution are
larger than those of the normal distribution and the variance is infinite. Stable
distributions, as a class, have the attractive feature that the distribution of the
sums of random variables of a stable distribution retains the same shape and
skewness, although the resulting distribution changes its scale and location
parameters. Moreover, they are the only class of statistical distributions with
this characteristic. Assuming that the returns follow a stable distribution, the
procedure for calculating VaR remains unchanged. The quantile must be derived
from the standardized stable distribution Sα(β, 1, 0).

2.3. Bayesian Inference

The combination of the likelihood function L(Ψ|IT ) and a prior f(Ψ) gives the kernel
of posterior density f(Ψ|IT ). We follow in our work, the study of Ardia (2008), for
the anterior density f(Ψ), in which their anterior is constructed from independent
diffuse antecedents as follows:

f(Ψ) = f(θ1, ξ1) . . . f(θK , ξK)f(P )

f(θK , ξK) ∝ f(θK)f(ξK)I{(θK , ξK) ∈ CSCk}(St = 1, ...,K)

f(θK) ∝ fN (θK , µθk , diag(σ2
θk

))I{(θk) ∈ PCk}(St = 1, ...,K)

f(ξK) ∝ fN (ξK , µθk , diag(σ2
ξk

))I{ξk,1, ξk,2 > 2}(St = 1, ...,K)

f(P ) ∝
K∏
i=1

 K∏
j=1

pi,j

 I{0 < pi,j < 1},
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where the vector of model parameters is Ψ = (θ1; ξ1; . . . ; θK ; ξK ;P ). In a state
St, CSCSt is the covariance-stationarity condition, PCSt defines the positive
condition, the asymmetry parameter is ξSt;1, ξSt;2 designates the tail parameter of
the skew-Student t-distribution in the state St, fN (.;µ;

∑
) defines the multivariate

normal density with mean µ and variance
∑

.

The likelihood function L(Ψ|IT ) is L(yt|Ψ, It−1) =
∏T
t=1 f(yt|Ψ, It−1), where

f(yt|Ψ, It−1) is the density of yt given by its past observations (It−1), and the model
parameters. The conditional density of yt for the MRS-GJR-GARCH model is ex-
pressed as follows

f(yt|Ψ, It−1) =

K∑
i=1

K∑
j=1

pi,jzi,t−1fD(yt|st = j,Ψt−1),

with

fD(yt|st = k,Ψt−1) =
1√

2πσt
exp{− y2

t

2σt
},

where zi;t−1 = P [st−1 = i|Ψ; It−1] is the filtered probability of state i at time t − 1:
the conditional density of in state yt given by Ψ and It−1 is fD(yt|st = k; Ψ; It−1).
After we obtain the posterior density function, we employ Markov Chain Monte
(MCMC) for numerical integration. The marginal posterior density function and
the state variables are obtained by integrating the posterior density function. We
follow Vihola (2012) that samples are produced from the posterior distribution
with adaptive MCMC algorithm. The benefit is that converge of Markov chain
is faster as when it is coercing the acceptance rate, it also learns the shape of
the target distribution. This algorithm also guarantees a positive variance and
covariance-stationarity of the conditional variance.

2.4. Forecast of Value-at-Risk (VaR)

The VaR methodology was introduced in the early 1990s by the investment bank
J.P. Morgan to measure the minimum portfolio loss that an institution might face
if an unlikely adverse event occurred at a certain time horizon. The VaR measures
the threshold value such that the probability of observing a loss more massive or
equal to it in a given time horizon is equal to α. The VaR estimation in T + 1 at risk
level α can be expressed as

VaRαT+1 = inf{yT+1 ∈ R
∣∣F (yT+1|IT ) = α},

where F (yT+1|IT ) is the one-step ahead cumulative density function (CDF ) evalu-
ated in y.
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The one-step ahead conditional density of yT+1 is a mixture of K regime-dependent
distribution can be expressed as

f(yt|Ψ, It−1) =

K∑
k=1

πk,T+1fD(yT+1|sT+1 = k,Ψ, IT ).

The mixing weights πk,T+1 =
∑K
i=1 pi,kηi,T , where ηi,T = P [sT = i|Ψ, IT ] are the fil-

tered probabilities at time T . For Bayesian estimation given a posterior sample
{Ψm,m = 1, · · · ,M}, the predictive PDF can be expressed as

f

(
yT+1

∣∣∣∣IT =

∫
Ψ

f(yT+1|Ψ, IT )f(Ψ|IT )dΨ

)
≈ 1

M

M∑
m=1

f

(
yT+1

∣∣∣∣Ψ[m], IT

)
.

Assessing the accuracy of VaR forecasts from different models is a considerable
task because of the importance of VaR in risk management. Here we use some
tests to examine the accuracy of VaR forecasts.

2.4.1. Unconditional coverage test

A well-specified VaR model should produce VaR forecasts that cover the pre-
specified probability. This means that 5% of the time the losses should exceed
the VaR(0.05). If the number of exceedances substantially differs from what is ex-
pected, then the model’s accuracy is questionable. If the actual loss exceeds the
VaR forecasts, this is termed an ”exception”, which can be presented by the indi-
cator variable qt as

qt =

{
1 if yt < VaRt(ρ),

0 if yt ≥ VaRt(ρ).

Obviously, qt is a Bernoulli random variable with probability ϕ. The Kupiec test
(Kupiec (1995)), also known as the unconditional coverage (UC) test, is designed
to test the number of exceptions based on the likelihood ratio (LR) test. The null
hypothesis of the UC test is H0 : ρ = ϕ. Then the LR test of the unconditional
coverage (LRUC) is defined as

LRUC = −2log

(
LR0

UC

LR1
UC

)
= −2log

(
ρn(1− ρ)T−n

ϕ̂n(1− ϕ̂)T−n

)
,

where L0
UC and L1

UC are the likelihood functions respectively under H0 and H1, T
is the number of the forecasting samples, n is the number of the exceptions and
ϕ̂ =

n

T
is the ML estimate of the ϕ under H1. Under H0, the LRUC is asymptotically

distributed as a χ2 random variable with one degree of freedom.
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2.4.2. Conditional coverage Independence test

Forecasts should be responsive to changes in volatilities, if they are low in
some periods and high in others. This means that VaR should be low in peri-
ods of low volatility and high in periods of high volatility. Thus, exceptions are
spread independently over the entire sample period and do not appear in clus-
ters (Sarma et al. (2003)). A model that cannot capture the clustering of volatilities
will exhibit the symptom of a clustering of exceptions. Kupiec’s test cannot ver-
ify the clustering of exceptions. To test exception clustering, Christoffersen (1998)
designed an independent conditional coverage test (CCI ) based on LR. The null hy-
pothesis of the CCI test assumes that the probability of an exception on a given
day t is not influenced by what happened the day before. Formally, H0 : ϕ10 = ϕ00,
where ϕij denotes that the probability of an i event on day t − 1 must be followed
by a j event on day t; ϕij = p(qt = j

∣∣qt−1 = i), where i; j = 0, 1. The LR statistic of the
CCI test (LRCCI) can be obtained as

LRCCI = −2log

(
LR0

CCI

LR1
CCI

)
= −2log

(
ϕ̂n(1− ϕ̂)T−n

ϕ̂n01
01 (1− ϕ̂01)n00 ϕ̂n11

11 (1− ϕ̂11)n10

)
,

where nij is the number of observations with value i followed by value j(i; j = 0; 1),
ϕ̂01 =

n01

n00 + n01
, and ϕ̂11 =

n11

n0 + n11
. Under H0, the LRUC is asymptotically dis-

tributed as a χ2 random variable with one degree of freedom.

2.4.3. Conditional coverage test

The CCI test is not complete on its own. Hence, Christoffersen (1998) proposed
a joint test: the conditional coverage (CC) test, which combines the properties of
both the UC and CCI tests. The null hypothesis of the CC test checks both the
exception cluster and consistency of the exceptions with VaR confidence level. The
null hypothesis of the test is H0 : ϕ01 = ϕ11 = ρ. The LR test statistic is obtained as

LRCC = −2log

(
LR0

CC

LR1
CC

)
= −2log

(
ρn(1− ρ)T−n

ϕ̂n01
01 (1− ϕ̂01)n00 ϕ̂n11

11 (1− ϕ̂11)n10

)
.

Under H0, LRCC is asymptotically distributed as a χ2 random variable with two
degrees of freedom. It is a summation of two separate statistics, LRUC and LRCCI,
as given below:
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Table 1. Descriptive statistics of the S&P 500 log-return

Index Observation Min Mean Max Skewness Kurtosis St.Dev Jarque-Bera
S&P 500 2251 -5.544 0.020 3.895 -1.0177 25.3216 0.4591 18357.56

LRUC = −2

[
log
(
L0

CC
)
− log

(
L1

CC
)]

= −2
[
log
(
L0

UC
)
− log

(
L1

CCI
)]

= −2

[
log
(
L0

UC
)
− log

(
L1

UC
)

+ log
(
L0

CCI
)
− log

(
L1

CCI
)]

= −2

[
log
(
L0

UC
)
− log

(
L1

UC
)]
− 2

[
log
(
L0

CCI
)
− log

(
L1

CCI
)]

= LRUC + LRCCI.

3. Discussion: empirical results and backtesting analysis

3.1. Data and Descriptive statistics

In this sub-section, for the analysis of the value at risk of the stock market
index, we choose a sample of the daily performance of S&P 500 from January
19, 2012, to December 29, 2020, composed of 2251 observations. To evaluate
our model before the COVID-19 period, the S&P 500 return from January 19,
2012, to December 30, 2019, i.e. 2000 observations, is divided into two groups.
The first 1490 observations (January 19, 2012, to December 18, 2017) are used
as a sample for estimation, while the remaining 510 observations (December 19,
2017, to December 30, 2019) are considered out-of-sample for the evaluation
of the pre-pandemic COVID-19 forecast. During the evaluation of the COVID-19
period model, 2251 observations are used. 1999 observations (January 19, 2012,
to December 27, 2019) are used as a sample for estimation, while the remaining
252 observations (December 30, 2019, to December 29, 2020) are taken as
out-of-sample for the evaluation of forecasts.

If pt is the price of an asset at time t, then rt := 100× log(pt/pt−1) is the (log) return.
We will show below that some of these returns have heavier tails than a normal
model, and we use a stable distribution to describe the returns.
In Table 1, the skewness of S&P 500 return is −1.0177 suggesting that the distri-
bution of the data is strongly skewed to the left or negatively skewed. The kurtosis
of S&P 500, we have 25.3216 implying that the distribution of the data is leptokur-
tic, which means the existence of fat tails. Jarque-Bera test-statistics in Table 1,
indicates that the S&P 500 return is not normally distributed. In Figure 1, we plot
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the prices and returns calculated using data from the S&P 500 stock market index
from January 19, 2012 to December 29, 2020.

Fig. 1. Daily price (on the left) and daily log return (on the right) of S&P 500 from
19 January 2012 to 29 December 2020.

3.2. Model parameter estimates

To estimate Markov Switching’s GJR-GARCH models, we use Thomas Chuffart’s
MSGtool, which is a MATLAB toolbox. This toolbox provides a set of functions to
simulate and estimate a wide variety of Markov Switching (MSG) GARCH models.
We use it according to the Bayesian method. Parameter estimation of the stable
MRS-GJR-GARCH model is performed on 2251 observations.

The S&P 500 return volatility is separated into two regimes, high volatility and low
volatility. The high volatility regime is related to high S&P 500 return deviations,
and the low volatility regime is related to small S&P 500 return volatility. Estimated
parameters from Table 2 show that the two regimes have different unconditional
volatility levels and volatility persistence. The unconditional volatility of the
second regime (α1,2 = 0.0544) is higher than that of the first regime (α1,1 = 0.0005).
Reactions to negative historical returns from the two regimes are different. The
first regime is (α2,1 = 0.3314), and the second one is (α2,2 = 0.0090). Lastly, the
volatility persistence of the first regime is 0.9498, and the second regime of 0.9699.
The posterior mean stable probabilities indicate that the probability of being in
the first regime is 93.62%, whereas being the second one is 6.38%.
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Table 2. Parameters estimates of MRS-GJR-GARCH stable model.

Regime Parameters mean Standard deviation

Regime 1

α0,1 0.0000 0.0000
α1,1 0.0005 0.0017
α2,1 0.3314 0.0441
β1 0.7836 0.0194

Regime 2

α0,2 0.0000 0.0000
α1,2 0.0544 0.0169
α2,2 0.0090 0.0159
β2 0.9111 0.0255
p11 0.9580 0.0193
P22 0.6164 0.1838

Transition matrix pij = Pr[st = j|st−1 = i]

1 2
1 0.9580 0.0420
2 0.6164 0.3836

Stable probabilities
State 1 State 2
0.9362 0.0638

3.3. VaR Backtesting

Backtesting measures the accuracy of VaR calculations. The loss forecast is cal-
culated using VaR methods and then compared to the actual losses at the end of
the next day. The degree of difference between predicted and actual losses indicates
whether the VaR models underestimates or overestimates the risk. Thus, backtest-
ing examines the data retrospectively and enables the VaR model to be evaluated.
A common first step in VaR backtesting analysis is to plot the return and VaR es-
timates together. Figure 2 shows the results of the one-day VaR forecast at the 5%
risk level. The solid red line shows the stable MRS-GJR-GARCH at two regimes,
the blue line represents the single regime GJR-GARCH while the realized returns
are shown in the black line. The VaR backtest consists of testing the performance
of the models on 1490 out-of-sample observations, which is used to forecast the
two-year VaR before COVID-19.
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Fig. 2. S&P 500 returns and VaR at 5% risk level from the pre-pandemic COVID-
19.

A backtesting procedure to evaluate the accuracy of VaR forecasts is recommended
by the Basel Committee on Banking Supervision (1996). This is generally based
on the number of observed violations, i.e. when, during a sampling period, actual
losses exceed VaR.

We also provide the number of violations and the violation ratios if the forecasting
VaR value on a given day is higher than the actual data, the violation is occurs.
The ratio of the number of observed violations to the expected number of violations
is called the violation rate. In this study, violations are expected in 5% of cases.
The results have shown in Table 3. To formally evaluate the performance of
VaR forecast accuracy, we employ three standard VaR backtest procedures. The
backtesting methods are the proportion of failure (POF ), conditional coverage (CC),
and conditional coverage independence (CCI ) tests. These backtesting procedures
basically perform frequency, joint, and independence tests of the VaR models.
These are based on the comparison between the number of times that losses
exceed the VaR and the expected number using statistical tests, such as the
proportion of failure (POF ) test of Kupiec (1995), the conditional coverage (CC) test
and conditional coverage independence (CCI ) of Christoffersen (1998). The POF
test is employed to investigate the frequency of failures in VaR models. Backtesting
a VaR model measures the probability of observing a violation or failure in a
sample period. However, the effectiveness of any VaR model is invalidated if the
failures occur in clusters on consecutive days. As a remedy, the conditional cover-
age (CC) test and conditional coverage independence (CCI ) of Christoffersen (1998)
evaluate the correctness of out-of-sample interval forecasts. These tests accept
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Table 3. Backtesting S&P 500 returns with T = 510 observation.

Models Distributions NV Expected Violation
Ratio VaR Volatility

MRS-GJR-GARCH

norm 36 25.5 1.4118 0.1829
student 14 25.5 0.5490 0.3105

ged 36 25.5 1.4118 0.1859
stable 20 25.5 0.7843 0.2525

GJR-GARCH

norm 27 25.5 1.0588 0.0866
student 11 25.5 0.4314 0.1470

ged 26 25.5 1.0196 0.0880
stable 14 25.5 0.5490 0.1195

GARCH

norm 27 25.5 1.0588 0.0411
student 8 25.5 0.3137 0.0697

ged 27 25.5 1.0588 0.0417
stable 14 25.5 0.5490 0.0567

or reject the VaR models in terms of their likelihood ratio statistic. According to
Christoffersen (1998), VaR forecasts are valid if and only if the failure processes
fulfills the unconditional coverage and independence test.

The unconditional coverage test is employed to test whether the VaR violation
rate is statistically different from the confidence level α. The CC test improves
the unconditional coverage test by not only testing the joint assumption of the
unconditional coverage, but also testing whether the probability of VaR violation
is independent over time.

In this study, VaR was estimated over the test window with four different distribu-
tions and at one VaR confidence level. A violation about 5% of the time is expected
for a VaR estimate at 95% confidence, and VaR failures do not cluster. The lack of
independence over time is created by the clustering of VaR failures because VaR
models react slowly to changing market conditions.

Examining Table 3, the MRS-GJR-GARCH stable model best estimates the perfor-
mance of S&P 500 with the numbers of violations NV = 20 ∈]16; 36[, violation rate
V R = 0.7843 ∈ [0.7; 1.3] followed by the GJR-GARCH normal, GARCH normal, and
GED with NV = 27, V R = 1.0588. The volatility of the VaR of the latter is low than
the other. The other models have either NV ≥ 36 and V R > 1.3, but with low VaR
volatility, or NV < 16 and V R < 0.5, but with high VaR volatility. To confirm our
observation, the POF, CC and CCI tests were performed in Table 4.

Although the GJR-GARCH normal, GARCH normal and GED models and the
MRS-GJR-GARCH (1,1) stable model have acceptable violation ratios, only the GJR-
GARCH normal and MRS-GJR-GARCH (1,1) stable models pass the POF, CC, and
CCI tests. Table 4 shows that the MRS-GJR-GARCH (1,1) stable model has a 95%
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Table 4. POF -test, CC-test, CCI-test and P-value results.

POF CC CCI
Models LRPOF p-value LRCC p-value LRCCI p-value

MRS-GJR-GARCH

normal 4.0577 0.0439 4.8967 0.0864 0.8390 0.3597
student 6.4814 0.0109 7.2174 0.0271 0.7359 0.3909

ged 4.0577 0.0439 4.8967 0.0864 0.8390 0.3596
stable 1.3444 0.2463 1.4029 0.4958 0.0586 0.8087

GJR-GARCH

normal 0.0912 0.7627 3.7206 0.1556 3.6294 0.0568
student 10.932 9.449e−4 11.418 3.315e−3 0.4859 0.4857

ged 0.0103 0.9193 4.1032 0.1285 4.093 0.0431
stable 6.4814 0.0109 7.2174 0.0271 0.7359 0.3909

GARCH

normal 0.0912 0.7626 9.9306 6.975e−3 9.8394 1.708e−3

student 17.077 3.589e−5 17.332 1.723e−4 0.2555 0.6132
ged 0.0912 0.7626 9.9306 6.975e−3 9.8394 1.708e−3

stable 6.4814 0.0109 7.2174 0.0271 0.7359 0.3909

confidence level of LRCC = 1.4029 < 5.99, LRPOF = 1.3444 < 3.84, and LRCCI =
0.0586 < 3.84, and the GJR-GARCH normal model with LRCC = 3.7206 < 5.99,
LRPOF = 0.0912 < 3.84, and LRCCI = 3.6294 < 3.84. The other models are rejected
in the other tests. Values in bold are interpreted as model acceptance, while nor-
mal values are interpreted as model rejection.
Given that the health crisis related to the COVID-19 pandemic has caused shocks
in global financial markets, particularly in the U.S. S&P 500 financial market,
financial risk forecasting models are struggling to account for these observed
changes in volatility regimes. We, therefore, evaluate our Value-at-Risk model over
the one-year period of the COVID-19 pandemic to show its effectiveness in pre-
dicting risks on the S&P 500 Index. We repeated the simulation in Table 5 and
compared our model with a stable distribution to other models. In Table 5, the
MRS-GJR-GARCH (1,1) model using a stable distribution best estimates the per-
formance of the S&P 500 with the numbers of violations NV = 18 ∈]6; 20[, Vio-
lation Ratio V R = 1.4286 ∈ [0.5; 1.5] followed by MRS-GJR-GARCH (1,1) GED, with
NV = 6, RV = 0.4762 and the models GJR-GARCH(1,1) stable, GARCH (1,1) stable
have NV = 20, and V R = 1.5873. The last two models have high VaR volatility. The
other models have either NV > 20, and V R > 1.5 but with low VaR volatility or
NV < 6, and V R < 0.5, but with high VaR volatility.

For 95% confidence level, the MRS-GJR-GARCH stable has an LRCC = 4.9469 < 5.99,
LRPOF = 2.163 < 3.84, and LRCCI = 2.7839 < 3.84 in Table 6. Thus, only the MRS-
GJR-GARCH (1,1) model with stable distribution is accepted in all tests. Although
GJR-GARCH(1,1) stable passed the CC, CCI tests and that the GARCH (1,1) with
the four distribution has passed only the CCI test, but they are all rejected in other
tests. Values in bold are interpreted as acceptance of the model whereas normal
values are interpreted as a rejection of the model. Other models are also rejected.
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Table 5. Backtesting S&P 500 returns during COVID-19 period with T = 252 ob-
servation.

Models Distributions NV Expected Violation
Ratio VaR Volatility

MRS-GJR-GARCH

norm 27 12.6 2.1429 0.6065
student 3 12.6 0.2381 1.5470

ged 6 12.6 0.4762 1.4617
stable 18 12.6 1.4286 0.8373

GJR-GARCH

norm 29 12.6 2.3016 0.3554
student 3 12.6 0.2381 0.9064

ged 4 12.6 0.3175 0.8565
stable 20 12.6 1.5873 0.4636

GARCH

norm 30 12.6 2.3810 0.2151
student 5 12.6 0.3968 0.5486

ged 5 12.6 0.3968 0.5183
stable 20 12.6 1.5873 0.2806

Table 6. POF -test, CC-test, CCI-test and P-value results.

POF CC CCI
Models LRPOF p-value LRCC p-value LRCCI p-value

MRS-GJR-GARCH

norm 13.24 2.741e−4 13.627 1.099e−3 0.3876 0.5336
student 10.969 9.264e−4 11.042 4.002e−3 0.0726 0.7876

ged 4.4771 0.0344 4.771 0.0920 0.2939 0.5877
stable 2.163 0.1414 4.9469 0.0843 2.7839 0.0952

GJR-GARCH

norm 16.699 4.381e−5 16.747 2.309e−4 0.0482 0.8262
student 10.969 9.263e−4 11.042 4.002e−3 0.0726 0.7876

ged 8.3261 3.908e−3 8.4556 0.0146 0.1296 0.7189
stable 3.9126 0.0479 4.2073 0.1220 0.2948 0.5872

GARCH

norm 18.546 1.658e−5 18.607 9.112e−5 0.0601 0.8064
student 6.1962 0.0128 6.3994 0.04078 0.2033 0.6521

ged 6.1962 0.0128 6.3994 0.0408 0.2033 0.6521
stable 3.9126 0.0479 4.0272 0.1335 0.1147 0.7349

Figure 3 shows the results for the VaR forecasting at the 5% risk level during
the COVID-19. The solid red line displays the model of two regimes, the blue line
represents the single regime whereas the returns are presented in the black line.
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Fig. 3. S&P 500 returns and VaR at 5% risk level during the pandemic COVID-19.

3.4. Discussion

We have used a Markov regime switching GJR-GARCH with stable distribution
to illustrate the relative forecasting performances. We apply the methods of
estimation of the Value-at-Risk and of backtesting described in Section 2 on the
data set described above. Furthermore, we plot in Figure 1 for S&P 500 stock
his prices, returns computed from data, and VaR computed under our models.
Our comparisons are based on a backtesting for a single level of confidence one
level of confidence 5% of the VaR. The performance of each model is given by an
average of its results for the S&P 500 stock. Figure 2 gives the violation ratios
for the models on the S&P 500 stock index for the period before the COVID-19.
Clearly the other models overestimates or under-estimates the VaR. GJR-GARCH
normal and Markov regime switching GJR-GARCH stable models results fluctuate
around the target value 5% in pre-pandemic and during the COVID-19 pandemic,
only the Markov regime switching GJR-GARCH stable perform well. In terms of
average of violation ratios, the MRS-GJR-GARCH stable model is the closest to
5% with 0.78%, and 1.42% respectively in pre-pandemic and during the COVID-19
pandemic. The backtest results over the stock in Table 3 and Table 5 indicate that
the MRS-GJR-GARCH stable model gives the best results in terms of backtest.
The proportion failure, unconditional, and conditional coverage tests give better
results for the regime switching model with stable distribution. The results of CC,
CCI and POF tests are given in Table 4 and Table 6.
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4. Conclusion

The objective of this paper is to study the forecasting performance of the stable
model MRS-GJR-GARCH in estimating the VaR for the S&P 500 volatility in
moments of economic crisis such as the one created by the COVID-19 pandemic.
The results show that MRS-GJR-GARCH with a stable distribution proves to be the
best fit for the data. The estimated parameter of MRS-GJR-GARCH with a stable
distribution shows that the two regimes report different levels of unconditional
volatility and persistence of the volatility process. Our MRS-GJR-GARCH stable
model gives an average violation rate on S&P 500 stocks closer to 5% than the
other models, and the model is statistically significant for the POF, CC, and CCI
tests for most of the two periods, the normal period i.e. the period before the
COVID-19 pandemic and the period during the COVID-19 pandemic. A Comparison
of the performance of S&P 500 and VaR at a risk level of 5% confirms that the
stable two-regime MRS-GJR-GARCH model performs better than its single regime
counterpart. Thus, this study implies that the two-regime MRS-GJR-GARCH model
with stable innovation seems to improve the forecasting performance of the VaR
model on the volatility of the S&P 500 return.

Further study will be focused on the heavy tails distribution by comparing GARCH
models and the conditional Extreme Value Theory (EVT ) specifications to improve
the VaR forecasting performance to overcome the problem of difficulty of VaR
models in estimating the heavy-tailed of the return distribution.
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