AFRIKA STATISTIKA

Théorie des Probabilités et Statistiques Mathématiques
et domaines connexes



Journal contents / Contenu du Journal

Volume 16, Numéro 1, Année 2021

Essomanda KONZOU,Efoévi KOUDOU,Kossi Essona GNEYOU,
Stein's method in two limit theorems involving the generalized inverse Gaussian distribution, pp. 2561-2586
http://dx.doi.org/10.16929/as/2021.2561.174
ABSTRACT

(ENGLISH) The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.

(FRENCH) Sous certaines conditions sur ses paramètres, la loi hyperbolique généralisée (GH) converge vers la loi gaussienne inverse généralisée (GIG). Lorsque les arêtes d'un arbre infini sont munies de résistances aléatoires indépendantes, de loi gaussienne inverse ou de loi gaussienne inverse réciproque, la résistance équivalente converge presque sûrement vers une variable aléatoire de loi gaussienne inverse réciproque (RIG). Dans cet article, nous déterminons des majorants explicites de la distance probabiliste entre la loi GH (resp. un circuit arborescent) et la loi limite GIG (resp. RIG) en appliquant la méthode de Stein.
Citer cet article par
Essomanda KONZOU,Efoévi KOUDOU,Kossi Essona GNEYOU, (2021). Stein's method in two limit theorems involving the generalized inverse Gaussian distribution. Afrika Statistika . Volume 16(1), pp 2561-2586
Doi : http://dx.doi.org/10.16929/as/2021.2561.174













JAS
JAS



ok